Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA Extraction from Plant Leaves Using a Microneedle Patch.

Identifieur interne : 000255 ( Main/Exploration ); précédent : 000254; suivant : 000256

DNA Extraction from Plant Leaves Using a Microneedle Patch.

Auteurs : Rajesh Paul [États-Unis] ; Emily Ostermann [États-Unis] ; Zhen Gu [États-Unis] ; Jean B. Ristaino [États-Unis] ; Qingshan Wei [États-Unis]

Source :

RBID : pubmed:32074406

Descripteurs français

English descriptors

Abstract

Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted Phytophthora infestans DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Microneedle patch-based DNA extraction Support Protocol 1: Microneedle patch fabrication Support Protocol 2: Real-time PCR amplification of microneedle patch extracted DNA.

DOI: 10.1002/cppb.20104
PubMed: 32074406


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA Extraction from Plant Leaves Using a Microneedle Patch.</title>
<author>
<name sortKey="Paul, Rajesh" sort="Paul, Rajesh" uniqKey="Paul R" first="Rajesh" last="Paul">Rajesh Paul</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ostermann, Emily" sort="Ostermann, Emily" uniqKey="Ostermann E" first="Emily" last="Ostermann">Emily Ostermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gu, Zhen" sort="Gu, Zhen" uniqKey="Gu Z" first="Zhen" last="Gu">Zhen Gu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioengineering Department, University of California, Los Angeles, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Bioengineering Department, University of California, Los Angeles, Los Angeles</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ristaino, Jean B" sort="Ristaino, Jean B" uniqKey="Ristaino J" first="Jean B" last="Ristaino">Jean B. Ristaino</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32074406</idno>
<idno type="pmid">32074406</idno>
<idno type="doi">10.1002/cppb.20104</idno>
<idno type="wicri:Area/Main/Corpus">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000271</idno>
<idno type="wicri:Area/Main/Curation">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000271</idno>
<idno type="wicri:Area/Main/Exploration">000271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA Extraction from Plant Leaves Using a Microneedle Patch.</title>
<author>
<name sortKey="Paul, Rajesh" sort="Paul, Rajesh" uniqKey="Paul R" first="Rajesh" last="Paul">Rajesh Paul</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ostermann, Emily" sort="Ostermann, Emily" uniqKey="Ostermann E" first="Emily" last="Ostermann">Emily Ostermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gu, Zhen" sort="Gu, Zhen" uniqKey="Gu Z" first="Zhen" last="Gu">Zhen Gu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioengineering Department, University of California, Los Angeles, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Bioengineering Department, University of California, Los Angeles, Los Angeles</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ristaino, Jean B" sort="Ristaino, Jean B" uniqKey="Ristaino J" first="Jean B" last="Ristaino">Jean B. Ristaino</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current protocols in plant biology</title>
<idno type="eISSN">2379-8068</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Plant (MeSH)</term>
<term>Lycopersicon esculentum (MeSH)</term>
<term>Phytophthora infestans (genetics)</term>
<term>Plant Leaves (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Lycopersicon esculentum (MeSH)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Leaves</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN des plantes</term>
<term>Feuilles de plante</term>
<term>Lycopersicon esculentum</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted Phytophthora infestans DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Microneedle patch-based DNA extraction Support Protocol 1: Microneedle patch fabrication Support Protocol 2: Real-time PCR amplification of microneedle patch extracted DNA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32074406</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2379-8068</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Current protocols in plant biology</Title>
<ISOAbbreviation>Curr Protoc Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA Extraction from Plant Leaves Using a Microneedle Patch.</ArticleTitle>
<Pagination>
<MedlinePgn>e20104</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cppb.20104</ELocationID>
<Abstract>
<AbstractText>Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted Phytophthora infestans DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Microneedle patch-based DNA extraction Support Protocol 1: Microneedle patch fabrication Support Protocol 2: Real-time PCR amplification of microneedle patch extracted DNA.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Paul</LastName>
<ForeName>Rajesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ostermann</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Bioengineering Department, University of California, Los Angeles, Los Angeles, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ristaino</LastName>
<ForeName>Jean B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Qingshan</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Protoc Plant Biol</MedlineTA>
<NlmUniqueID>101685882</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="Y">Lycopersicon esculentum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA extraction</Keyword>
<Keyword MajorTopicYN="Y">MN patch</Keyword>
<Keyword MajorTopicYN="Y">PCR</Keyword>
<Keyword MajorTopicYN="Y">in-field diagnostics</Keyword>
<Keyword MajorTopicYN="Y">microneedle patch</Keyword>
<Keyword MajorTopicYN="Y">plant pathogen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32074406</ArticleId>
<ArticleId IdType="doi">10.1002/cppb.20104</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5, 537-561. doi: 10.3390/bios5030537.</Citation>
</Reference>
<Reference>
<Citation>Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., … Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461, 393-398. doi: 10.1038/nature08358.</Citation>
</Reference>
<Reference>
<Citation>Hassan, C. M., & Peppas, N. A. (2000). Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules, 33, 2472-2479. doi: 10.1021/ma9907587.</Citation>
</Reference>
<Reference>
<Citation>Jo, Y.-K., Gross, D. C., Shim, W.-B., & Han, A. (2013). Development of a real-time microchip PCR system for portable plant disease diagnosis. PLoS One, 8, e82704. doi: 10.1371/JOURNAL.PONE.0082704.</Citation>
</Reference>
<Reference>
<Citation>Julich, S., Riedel, M., Kielpinski, M., Urban, M., Kretschmer, R., Wagner, S., … Werres, S. (2011). Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosensors and Bioelectronics, 26, 4070-4075. doi: 10.1016/J.BIOS.2011.03.035.</Citation>
</Reference>
<Reference>
<Citation>Kim, S. J., Lee, K. J., Kim, I. Y., Lee, Y. M., & Kim, S. I. (2003). Swelling kinetics of modified poly(vinyl alcohol) hydrogels. Journal of Applied Polymer Science, 90, 3310-3313. doi: 10.1002/app.13076.</Citation>
</Reference>
<Reference>
<Citation>Kong, J. E., Wei, Q., Tseng, D., Zhang, J., Pan, E., Lewinski, M., … Di Carlo, D. (2017). Highly stable and sensitive nucleic acid amplification and cell-phone-based readout. ACS Nano, 11, 2934-2943. doi: 10.1021/acsnano.6b08274.</Citation>
</Reference>
<Reference>
<Citation>Leach, K. A., McSteen, P. C., & Braun, D. M. (2016). Genomic DNA isolation from maize (Zea mays) leaves using a simple, high-throughput protocol. Current Protocols in Plant Biology, 1, 15-27. doi: 10.1002/cppb.20000.</Citation>
</Reference>
<Reference>
<Citation>Li, Z., Paul, R., Ba Tis, T., Saville, A. C., Hansel, J. C., Yu, T., … Wei, Q. (2019). Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants, 5, 856-866. doi: 10.1038/s41477-019-0476-y.</Citation>
</Reference>
<Reference>
<Citation>Mao, F., Leung, W.-Y., & Xin, X. (2007). Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnology, 7, 76. doi: 10.1186/1472-6750-7-76.</Citation>
</Reference>
<Reference>
<Citation>Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321-4325. doi: 10.1093/nar/8.19.4321.</Citation>
</Reference>
<Reference>
<Citation>Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31-43. doi: 10.1017/S0021859605005708.</Citation>
</Reference>
<Reference>
<Citation>Paul, R., Saville, A. C., Hansel, J. C., Ye, Y., Ball, C., Williams, A., … Wei, Q. (2019). Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano, 13, 6540-6549. doi: 10.1021/acsnano.9b00193.</Citation>
</Reference>
<Reference>
<Citation>Ristaino, J. B., Groves, C. T., & Parra, G. R. (2001). PCR amplification of the Irish potato famine pathogen from historic specimens. Nature, 411, 695-697. doi: 10.1038/35079606.</Citation>
</Reference>
<Reference>
<Citation>Ristaino, J. B., Hu, C. H., & Fitt, B. D. L. (2013). Evidence for presence of the founder Ia mtDNA haplotype of Phytophthora infestans in 19th century potato tubers from the Rothamsted archives. Plant Pathology, 62, 492-500. doi: 10.1111/j.1365-3059.2012.02680.x.</Citation>
</Reference>
<Reference>
<Citation>Ristaino, J. B., Saville, A., Paul, R., Cooper, D., & Wei, Q. (2019). Detection of Phytophthora infestans by LAMP, real-time LAMP and droplet digital PCR. Plant Disease, Advance online publication. doi: 10.1094/PDIS-06-19-1186-RE.</Citation>
</Reference>
<Reference>
<Citation>Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1-13. doi: 10.1016/j.compag.2010.02.007.</Citation>
</Reference>
<Reference>
<Citation>Savary, S., Ficke, A., Aubertot, J.-N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519-537. doi: 10.1007/s12571-012-0200-5.</Citation>
</Reference>
<Reference>
<Citation>Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: An art or a science. Biotechnology Journal, 2, 386-392. doi: 10.1002/biot.200600195.</Citation>
</Reference>
<Reference>
<Citation>Wang, C., Ye, Y., Hochu, G. M., Sadeghifar, H., & Gu, Z. (2016). Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Letters, 16, 2334-2340. doi: 10.1021/acs.nanolett.5b05030.</Citation>
</Reference>
<Reference>
<Citation>Wang, H., Qi, M., & Cutler, A. J. (1993). A simple method of preparing plant samples for PCR. Nucleic Acids Research, 21, 4153-4154. doi: 10.1093/nar/21.17.4153.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Ye, Y., Yu, J., Kahkoska, A. R., Zhang, X., Wang, C., … Gu, Z. (2018). Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 12, 2466-2473. doi: 10.1021/acsnano.7b08152.</Citation>
</Reference>
<Reference>
<Citation>Yu, J., Zhang, Y., Ye, Y., DiSanto, R., Sun, W., Ranson, D., … Gu, Z. (2015). Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 112, 8260-8265. doi: 10.1073/pnas.1505405112.</Citation>
</Reference>
<Reference>
<Citation>Zhou, L., Shen, R., Ma, X., Li, H., Li, G., & Liu, Y. (2016). Preparation of rice plant genomic DNA for various applications. Current Protocols in Plant Biology, 1, 29-42. doi: 10.1002/cppb.20002.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Paul, Rajesh" sort="Paul, Rajesh" uniqKey="Paul R" first="Rajesh" last="Paul">Rajesh Paul</name>
</region>
<name sortKey="Gu, Zhen" sort="Gu, Zhen" uniqKey="Gu Z" first="Zhen" last="Gu">Zhen Gu</name>
<name sortKey="Gu, Zhen" sort="Gu, Zhen" uniqKey="Gu Z" first="Zhen" last="Gu">Zhen Gu</name>
<name sortKey="Ostermann, Emily" sort="Ostermann, Emily" uniqKey="Ostermann E" first="Emily" last="Ostermann">Emily Ostermann</name>
<name sortKey="Ristaino, Jean B" sort="Ristaino, Jean B" uniqKey="Ristaino J" first="Jean B" last="Ristaino">Jean B. Ristaino</name>
<name sortKey="Ristaino, Jean B" sort="Ristaino, Jean B" uniqKey="Ristaino J" first="Jean B" last="Ristaino">Jean B. Ristaino</name>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32074406
   |texte=   DNA Extraction from Plant Leaves Using a Microneedle Patch.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32074406" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024